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Abstract

We study a general class of bicriteria network design problems. A generic problem in this
class is as follows: Given an undirected graph and two minimization objectives (under different
cost functions), with a budget specified on the first, find a ¡subgraph from a given subgraph-class
that minimizes the second objective subject to the budget on the first. We consider three different
criteria - the total edge cost, the diameter and the maximum degree of the network. Here, we
present the first polynomial-time approximation algorithms for a large class of bicriteria network
design problems for the above mentioned criteria. The following general types of results are
presented.

First, we develop a framework for bicriteria problems and their approximations. Second,
when the two criteria are the same we present a “black box” parametric search technique. This
black box takes in as input an (approximation) algorithm for the unicriterion situation and gen-
erates an approximation algorithm for the bicriteria case with only a constant factor loss in the
performance guarantee. Third, when the two criteria are the diameter and the total edge costs we
use a cluster-based approach to devise a approximation algorithms — the solutions output violate
both the criteria by a logarithmic factor. Finally, for the class of treewidth-bounded graphs, we
provide pseudopolynomial-time algorithms for a number of bicriteria problems using dynamic
programming. We show how these pseudopolynomial-time algorithms can be converted to fully
polynomial-time approximation schemes using a scaling technique.
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1 Motivation

With the information superhighway fast becoming a reality, the problem of designing networks ca-

pable of accommodating multimedia (both audio and video) traffic in a multicast (simultaneous

transmission of data to multiple destinations) environment has come to assume paramount impor-

tance [Ch91, FW+85, KJ83, KP+92A, KP+93]. As discussed in Kompella, Pasquale and Polyzos

[KP+92A], one of the popular solutions to multicast routing involves tree construction. Two opti-

mization criteria – (1) the minimum worst-case transmission delay and (2) the minimum total cost

– are typically sought to be minimized in the construction of these trees. Network design problems

where even one cost measure must be minimized, are oftenNP-hard. (See Section A2 on Network

Design in [GJ79].) But, in real-life applications, it is often the case that the network to be built is

required to minimize multiple cost measures simultaneously, with different cost functions for each

measure. For example, as pointed out in [KP+92A], in the problem of finding good multicast trees,

each edge has associated with it two edge costs: the construction cost and the delay cost. The con-

struction cost is typically a measure of the amount of buffer space or channel bandwidth used and the

delay cost is a combination of the propagation, transmission and queuing delays.

Such multi-criteria network design problems, with separate cost functions for each optimization

criterion, also occur naturally in Information Retrieval [BK90] and VLSI designs (see [ZP+94] and

the references therein). With the advent of deep micron VLSI designs, the feature size has shrunk to

sizes of 0.5 microns and less. As a result, the interconnect resistance, being proportional to the square

of the scaling factor, has increased significantly. An increase in interconnect resistance has led to an

increase in interconnect delays thus making them a dominant factor in the timing analysis of VLSI

circuits. Therefore VLSI circuit designers aim at finding minimum cost (spanning or Steiner) trees

given delay bound constraints on source-sink connections.

The above applications set the stage for the formal definition of multicriteria network design prob-

lems. We explain this concept by giving a formal definition of a bicriteria network design problem.

A generic bicriteria network design problem, (A, B, S), is defined by identifying two minimization

objectives, -A andB, - from a set of possible objectives, and specifying a membership requirement

in a class of subgraphs, -S. The problem specifies a budget value on the first objective,A, under one

cost function, and seeks to find a network having minimum possible value for the second objective,

B, under another cost function, such that this network is within the budget on the first objective. The

solution network must belong to the subgraph-classS. For example, the problem of finding low-cost

and low-transmission-delay multimedia networks [KP+92A, KP+93] can be modeled as the (Diam-

eter, Total cost, Spanning tree)-bicriteria problem: given an undirected graphG = (V;E) with two

weight functionsce andde for each edgee 2 E modeling construction and delay costs respectively,

and a boundD (on the total delay), find a minimumc-cost spanning tree such that the diameter of the

tree under thed-costs is at mostD. It is easy to see that the notion of bicriteria optimization problems

can be easily extended to the more general multicriteria optimization problems. In this paper, we will

be mainly concerned with bicriteria network design problems.
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In the past, the problem of minimizing two cost measures was often dealt with by attempting to

minimize some combination of the two, thus converting it into a unicriterion problem. This approach

fails when the two criteria are very disparate. We have chosen, instead, to model bicriteria problems

as that of minimizing one criterion subject to a budget on the other. We argue that this approach is

both general as well as robust. It is more general because it subsumes the case where one wishes to

minimize some functional combination of the two criteria. It is more robust because the quality of

approximation is independent of which of the two criteria we impose the budget on. We elaborate on

this more in Sections 5.1 and 5.2.

The organization of the rest of the paper is as follows: Section 3 summarizes the results obtained

in this paper; Section 2 discusses related research work; Section 4 contains the hardness results;

Section 5.1 shows that the two alternative ways of formulating a given bicriteria problem are indeed

equivalent; Section 5.2 demonstrates the generality of the bicriteria approach; Section 6 details the

parametric search technique; Section 7 presents the approximation algorithm for diameter constrained

Steiner trees; Section 8 contains the results on treewidth-bounded graphs; Section 9 contains some

concluding remarks and open problems.

2 Previous Work

2.1 General Graphs

The area of unicriterion optimization problems for network design is vast and well-explored (See

[Ho95, CK95] and the references therein.). Ravi et al. [RM+93] studied the degree-bounded mini-

mum cost spanning tree problem and provided an approximation algorithm with performance guar-

antee (O(log n); O(log n)).

The (Degree, Diameter, Spanning tree) problem was studied by Ravi [Ra94] in the context of

finding good broadcast networks. There he provides an approximation algorithm for the (Degree,

Diameter, Spanning tree) problem with performance guarantee (O(log2 n); O(log n))6.

The (Diameter, Total cost, Spanning tree) entry in Table 1 corresponds to the diameter-constrained

minimum spanning tree problem introduced earlier. It is known that this problem isNP-hard even

in the special case where the two cost functions are identical [HL+89]. Awerbuch, Baratz and Peleg

[AB+90] gave an approximation algorithm with(O(1); O(1)) performance guarantee for this prob-

lem - i.e. the problem of finding a spanning tree that has simultaneously small diameter (i.e., shallow)

and small total cost (i.e., light), both under the same cost function. Khuller, Raghavachari and Young

[KR+93] studied an extension calledLight, approximate Shortest-path Trees (LAST)and gave an

approximation algorithm with(O(1); O(1)) performance guarantee. Kadaba and Jaffe [KJ83], Kom-

pella et al. [KP+92A], and Zhu et al. [ZP+94] considered the (Diameter, Total cost, Steiner tree)

problem with two edge costs and presented heuristics without any guarantees. It is easy to con-

6The result in Ravi [Ra94] is actually somewhat stronger - given a budget,D, on the degree he finds a tree whose total
cost is at mostO(log n) times the optimal and whose degree is at mostO(D log n+ log2 n).
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struct examples to show that the solutions produced by these heuristics in [ZP+94, KP+92A], can

be arbitrarily bad with respect to an optimal solution. A closely related problem is that of finding

a diameter-constrained shortest path between two pre-specified verticess and t, or (Diameter, To-

tal cost,s-t path). This problem, termed the multi-objective shortest path problem (MOSP) in the

literature, isNP-complete and Warburton [Wa87] presented the first fully polynomial approxima-

tion scheme (FPAS) for it. Hassin [Ha92] provided a strongly polynomialFPAS for the problem

which improved the running time of Warburton [Wa87]. This result was further improved by Phillips

[Ph+93].

The (Total cost, Total cost, Spanning tree)-bicriteria problem has been recently studied by Ganley

et al. [GG+95]. They consider a more general problem with more than two weight functions. They

also gave approximation algorithms for the restricted case when each weight function obeys triangle

inequality. However, their algorithm does not have a bounded performance guarantee with respect to

each objective.

2.2 Treewidth-Bounded Graphs

ManyNP-hard problems have exact solutions when attention is restricted to the class of treewidth-

bounded graphs and much work has been done in this area (see [AC+93, AL+91, BL+87] and the

references therein). Independently, Bern, Lawler and Wong [BL+87] introduced the notion of de-

composable graphs. Later, it was shown [AC+93] that the class of decomposable graphs and the

class of treewidth-bounded graphs are equivalent. Bicriteria network design problems restricted to

treewidth-bounded graphs have been previously studied in [AL+91, Bo88].

3 Our Contributions

In this paper, we study the complexity and approximability of a number of bicriteria network design

problems. The three objectives we consider are: (i) total cost, (ii) diameter and (iii) degree of the

network. These reflect the price of synthesizing the network, the maximum delay between two points

in the network and the reliability of the network, respectively. TheTotal costobjective is the sum of

the costs of all the edges in the subgraph. TheDiameterobjective is the maximum distance between

any pair of nodes in the subgraph. TheDegreeobjective denotes the maximum over all nodes in the

subgraph, of the degree of the node. The class of subgraphs we consider in this paper are mainly

Steiner trees(and henceSpanning treesas a special case); although several of our results extend to

more general connected subgraphs such as generalized Steiner trees.

As mentioned in [GJ79], most of the problems considered in this paper, areNP-hard for arbi-

trary instances even when we wish to find optimum solutions with respect to a single criterion. Given

the hardness of finding optimal solutions, we concentrate on devising approximation algorithms with

worst case performance guarantees. Recall that an approximation algorithm for a minimization prob-

lem � provides aperformance guaranteeof � if for every instanceI of �, the solution value
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returned by the approximation algorithm is within a factor� of the optimal value forI. Here, we ex-

tend this notion to apply to bicriteria optimization problems. An(�; �)-approximation algorithm for

an (A, B, S)-bicriteria problem is defined as a polynomial-time algorithm that produces a solution

in which the first objective (A) value, is at most� times the budget, and the second objective (B)

value, is at most� times the minimum for any solution that is within the budget onA. The solution

produced must belong to the subgraph-classS. Analogous definitions can be given whenA and/or

B are maximization objectives.

3.1 General Graphs

Table 1 contains the performance guarantees of our approximation algorithms for finding spanning

trees,S, under different pairs of minimization objectives,A andB. For each problem cataloged in

the table, two different costs are specified on the edges of the undirected graph: the first objective is

computed using the first cost function and the second objective, using the second cost function. The

rows are indexed by the budgeted objective. For example the entry in rowA, columnB, denotes

the performance guarantee for the problem of minimizing objectiveB with a budget on the objective

A. All the results in Table 1 extend to finding Steiner trees with at most a constant factor worsening

in the performance ratios. For the diagonal entries in the table the extension to Steiner trees follows

from Theorem 6.3. ALGORITHM DCST of Section 7 in conjunction with ALGORITHM BICRITERIA-

EQUIVALENCE of Section 5.1 yields the (Diameter, Total cost, Steiner tree) and (Total cost, Diameter,

Steiner tree) entries. The other nondiagonal entries can also be extended to Steiner trees and these

extensions will appear in the journal versions of [RM+93, Ra94]. Our results for arbitrary graphs can

be divided into three general categories.

Cost Measures Degree Diameter Total Cost
Degree (O(log n); O(log n))� (O(log2 n); O(log n))[Ra94] (O(log n); O(log n))[RM+93]

Diameter (O(log n); O(log2 n))[Ra94] (1 + ; 1 + 1


)� (O(log n); O(log n))�

Total Cost (O(log n); O(log n))[RM+93] (O(log n); O(log n))� (1 + ; 1 + 1


)�

Table 1. Performance Guarantees for finding spanning trees in an arbitrary graph onn nodes. Asterisks indicate
results obtained in this paper. > 0 is a fixed accuracy parameter.

First, as mentioned before, there are two natural alternative ways of formulating general bicri-

teria problems: (i) where we impose the budget on the first objective and seek to minimize the

second and (ii) where we impose the budget on the second objective and seek to minimize the first.

We show that an(�; �)-approximation algorithm for one of these formulations naturally leads to a

(�; �)-approximation algorithm for the other. Thus our definition of a bicriteria approximation is

independent of the choice of the criterion that is budgeted in the formulation. This makes it a robust

definition and allows us to fill in the entries for the problems (B, A, S) by transforming the results

for the corresponding problems (A,B, S).

Second, the diagonal entries in the table follow as a corollary of a general result (Theorem 6.3)

which is proved using a parametric search algorithm. The entry for (Degree, Degree, Spanning tree)
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follows by combining Theorem 6.3 with theO(logn)-approximation algorithm for the degree prob-

lem in [RM+93]. In [RM+93] they actually provide anO(log n)-approximation algorithm for the

weighted degree problem. The weighted degree of a subgraph is defined as the maximum over all

nodes of the sum of the costs of the edges incident on the node in the subgraph. Hence we actually get

an(O(log n); O(log n))-approximation algorithm for the (Weighted degree, Weighted degree, Span-

ning tree)-bicriteria problem. Similarly, the entry for (Diameter, Diameter, Spanning tree) follows

by combining Theorem 6.3 with the known exact algorithms for minimum diameter spanning trees

[CG82]; while the result for (Total cost, Total cost, Spanning tree) follows by combining Theorem

6.3 with an exact algorithm to compute a minimum spanning tree [CLR].

Finally, we present a cluster based approximation algorithm and a solution based decomposition

technique for devising approximation algorithms for problems when the two objectives are different.

Our techniques yield(O(log n); O(log n))-approximation algorithms for the (Diameter, Total cost,

Steiner tree) and the (Degree, Total cost, Steiner tree) problems7.

3.2 Treewidth-Bounded Graphs

We also study the bicriteria problems mentioned above for the class of treewidth-bounded graphs.

Examples of treewidth-bounded graphs include trees, series-parallel graphs,k-outerplanar graphs,

chordal graphs with cliques of size at mostk, bounded-bandwidth graphs etc. We use a dynamic

programming technique to show that for the class of treewidth-bounded graphs, there are either

polynomial-time or pseudopolynomial-time algorithms (when the problem isNP-complete) for sev-

eral of the bicriteria network design problems studied here. Apolynomial time approximation

scheme(PTAS) for problem� is a family of algorithmsA such that, given an instanceI of �, for

all � > 0, there is a polynomial time algorithmA 2 A that returns a solution which is within a factor

(1 + �) of the optimal value forI. A polynomial time approximation scheme in which the running

time grows as a polynomial function of� is called afully polynomial time approximation scheme.

Here we show how to convert these pseudopolynomial-time algorithms for problems restricted to

treewidth-bounded graphs into fully polynomial-time approximation schemes using a general scaling

technique. Stated in our notation, we obtain polynomial time approximation algorithms with perfor-

mance of(1; 1 + �), for all � > 0. The results for treewidth-bounded graphs are summarized in Table

2. As before, the rows are indexed by the budgeted objective. All algorithmic results in Table 2 also

extend to Steiner trees in a straightforward way.

Our results for treewidth-bounded graphs have an interesting application in the context of find-

ing optimum broadcast schemes. Kortsarz and Peleg [KP92] gaveO(log n)-approximation algo-

rithms for the minimum broadcast time problem for series-parallel graphs. Combining our results for

the (Degree, Diameter, Spanning tree) for treewidth-bounded graphs with the techniques in [Ra94],

we obtain anO( log n
log log n)-approximation algorithm for the minimum broadcast time problem for

treewidth-bounded graphs (series-parallel graphs have a treewidth of2), improving and generalizing

7The result for (Degree, Total cost, Steiner tree) can also be obtained as a corollary of the results in [RM+93].

5



the result in [KP92]. Note that the best known result for this problem for general graphs is by Ravi

[Ra94] who provides an approximation algorithm performance guarantee (O(log2 n); O(log n)).

Cost Measures Degree Diameter Total Cost
Degree

polynomial-time polynomial-time polynomial-time
Diameter (weakly NP-hard) (weakly NP-hard)

polynomial-time (1; 1 + �) (1; 1 + �)

Total Cost (weakly NP-hard) (weakly NP-hard)
polynomial-time (1; 1 + �) (1; 1 + �)

Table 2. Bicriteria spanning tree results for treewidth-bounded graphs.

4 Hardness results

The problem of finding a minimum degree spanning tree is stronglyNP-hard [GJ79]. This im-

plies that all spanning tree bicriteria problems, where one of the criteria is degree, are also strongly

NP-hard. In contrast, it is well known that the minimum diameter spanning tree problem and the

minimum cost spanning tree problems have polynomial time algorithms (see [CLR] and the refer-

ences therein).

The (Diameter, Total Cost, Spanning tree)-bicriteria problem is stronglyNP-hard even in the

case where both cost functions are identical [HL+89]. Here we give the details of the reduction to

show that (Diameter, Total Cost, Spanning tree) is weaklyNP-hard even for series-parallel graphs

(i.e. graphs with treewidth at most2). Similar reductions can be given to show that (Diameter,

Diameter, Spanning tree) and (Total cost, Total cost, Spanning tree) are also weaklyNP-hard for

series-parallel graphs.

We first recall the definition of thePARTITION problem [GJ79]. As an instance of thePAR-

TITION problem we are given a setT = ft1; t2; � � � ; tng of positive integers and the question is

whether there exists a subsetX � A such that
X

ti2X

ti =
X

tj2T�X

tj = (
X

tj2T

tj)=2.

Theorem 4.1 (Diameter, Total cost, Spanning tree) is NP-hard for series-parallel graphs.

,

Proof: Reduction from thePARTITION problem. Given an instanceT = ft1; t2; � � � ; tng of the

PARTITION problem, we construct a series parallel graphG with n + 1 vertices,v1; v2; � � � vn+1

and2n edges. We attach a pair of parallel edges,e1i ande2i , betweenvi andvi+1, 1 � i � n. We

now specify the two cost functionsf andg on the edges of this graph;c(e1i ) = ti; c(e
2
i ) = 0; d(e1i ) =

0; d(e2i ) = ti; 1 � i � n. Let
X

ti2T

ti = 2H . Now it is easy to show thatG has a spanning tree

of d-diameter at mostH and totalc-cost at mostH if and only if there is a solution to the original

instanceT of thePARTITION problem.
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We now show that the (Diameter, Total-cost, Steiner tree) problem is hard to approximate within

a logarithmic factor. An approximation algorithm provided in Section 7. There is however a gap

between the results of Theorems 4.3 and 7.7. Our non-approximability result is obtained by an

approximation preserving reduction from theMIN SET COVER . An instance(T;X) of the MIN

SET COVER problem consists of a universeT = ft1; t2; : : : ; tkg and a collection of subsetsX =

fX1;X2; : : : ;Xmg; Xi � T , each setXi having an associated costci. The problem is to find a

minimum cost collection of the subsets whose union isT .

Fact 4.2 Recently [AS97, RS97] have independently shown the following non-approximability

result:

It is NP -hard to find an approximate solution to the MIN SET COVER problem, with a uni-

verse of size k, with performance guarantee better than 
(lnk).

Corollary 4.3 There is an approximation preserving reduction from MIN SET COVER prob-

lem to the (Diameter, Total Cost, Steiner tree) problem. Thus:

Unless P = NP , given an instance of the (Diameter, Total Cost, Steiner tree) problem

with k sites, there is no polynomial-time approximation algorithm that outputs a Steiner

tree of diameter at most the bound D, and cost at most R times that of the minimum cost

diameter-D Steiner tree, for R < lnk.

Proof: We give an approximation preserving reduction from theMIN SET COVER problem to the

(Diameter, Total Cost, Steiner tree) problem. Given an instance(T;X) of the MIN SET COVER

problem whereT = ft1; t2; : : : ; tkg andX = fX1;X2; : : : ;Xmg; Xi � T , where the cost of

the setXi is ci, we construct an instanceG of the (Diameter, Total Cost, Steiner tree) problem as

follows. The graphG has a nodeti for each elementti of T 8, a nodexi for each setXi, and an

extra “enforcer-node”n. For each setXi, we attach an edge between nodesn andxi of c-costci, and

d-cost1. For each elementti and setXj such thatti 2 Xj we attach an edge(ti; xj) of c-cost, 0, and

d-cost,1. In addition to these edges, we add a pathP made of two edges ofc-cost, 0, andd-cost,1, to

the enforcer noden (see Figure 1). The pathP is added to ensure that all the nodesti are connected

to n using a path ofd-cost at most 2. All other edges in the graph are assigned infinitec andd-costs.

The nodesti along withn and the two nodes ofP are specified to be the terminals for the Steiner

tree problem instance. We claim thatG has ac-cost Steiner tree of diameter at most4 and costC if

and only if the original instance(T;X) has a solution of costC.

Note that any Steiner tree of diameter at most4 must contain a path fromti to n, for all i, that

uses an edge(xj ; n) for someXj such thatti 2 Xj . Hence any Steiner tree of diameter at most4

provides a feasible solution of equivalentc-cost to the original Set cover instance. The proof now

follows from Theorem 4.2.

8There is a mild abuse of notation here but it should not lead to any confusion.
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Figure 1: Figure illustrating the reduction from theMIN SET COVER problem to (Diameter, Total
cost, Steiner tree) problem. The instance ofMIN SET COVER is (T;X) whereT = ft1; t2; : : : ; t7g,
X = fx1; x2; x3; x4g. Herex1 = ft1; t2; t3g; x2 = ft3; t4; t5g; x3 = ft5g andx4 = ft6; t7g. The
cost on the edges shown in the figure denotes thec-cost of the edges. All these edges haved-cost
= 1.

5 Bicriteria Formulations: Properties

In Section 1, we claimed that our formulation for bicriteria problems is robust and general. In this

section, we justify these claims.

5.1 Equivalence of Bicriteria Formulations: Robustness

In this section, we show that our formulation for bicriteria problems is robust and general.

LetG be a graph with two (integral)9 cost functions,c andd (typically edge costs or node costs).

LetA (B) be a minimization objective computed using cost functionc (d). Let the budget bound on

thec-cost10 (d-cost) of a solution subgraph be denoted byC (D).

There are two natural ways to formulate a bicriteria problem: (i) (A,B, S) - find a subgraph inS

whoseA-objective value (under thec-cost) is at mostC and which has minimumB-objective value

(under thed-cost), (ii) (B,A, S) - find a subgraph inS whoseB-objective value (under thed-cost)

is at mostD and which has minimumA-objective value (under thec-cost).

Note that bicriteria problems are generally hard, when the two criteria arehostilewith respect

to each other - the minimization of one criterion conflicts with the minimization of the other. A
9In case of rational cost functions, our algorithms can be extended with a small additive loss in the performance guar-

antee.
10We use the term “cost underc” or “ c-cost” in this section to mean the value of the objective function computed using

c, and not to mean the total of all thec costs in the network.
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good example of hostile objectives are the degree and the total edge cost of a spanning tree in an

unweighted graph [RM+93]. Two minimization criteria are formally defined to be hostile whenever

the minimum value of one objective is monotonically nondecreasing as the budget (bound) on the

value of the other objective is decreased.

Let A�APPROX(G; C) be any(�; �)-approximation algorithm for (A, B, S) on graphG

with budgetC under thec-cost. We now show that there is a transformation which produces a(�; �)-

approximation algorithm for (B,A, S). The transformation uses binary search on the range of values

of the c-cost with an application of the given approximation algorithm,A�APPROX, at each

step of this search. Let the minimumc-cost of aD-bounded subgraph inS beOPTc. Let Chi be an

upper bound on thec-cost of anyD-bounded subgraph inS. Note thatChi is at most some polynomial

in n times the maximumc-cost (of an edge or a node). Hencelog(Chi) is at most a polynomial in

terms of the input specification. LetHeuc (Heud) denote thec-cost (d-cost) of the subgraph output

by ALGORITHM BICRITERIA-EQUIVALENCE given below.

ALGORITHM BICRITERIA-EQUIVALENCE:

� Input: G - graph,D - budget on criterionB under thed-cost,A�APPROX - an(�; �)-
approximation algorithm for (A,B, S).

�1. LetChi be an upper bound on thec-cost of anyD-bounded subgraph inS.

2. Do binary search and find aC0 in [0; Chi] such that

(a) A�APPROX(G; C0) returns a subgraph withd-cost greater than�D, and

(b) A�APPROX(G; C0 + 1) returns a subgraph withd-cost at most�D.

3. If the binary search in Step 2 fails to find a validC0 then output “NO SOLUTION” else
outputA�APPROX(G; C0 + 1).

� Output: A subgraph fromS such that itsc-cost is at most� times that of the minimum
c-costD-bounded subgraph and itsd-cost is at most�D.

Claim 5.1 IfG contains aD-bounded subgraph in S then ALGORITHM BICRITERIA-EQUIVALENCE

outputs a subgraph from S whose c-cost is at most � times that of the minimum c-cost D-

bounded subgraph and whose d-cost is at most �D.

Proof: SinceA andB are hostile criteria it follows that the binary search in Step 2 is well defined.

Assume thatS contains aD-bounded subgraph. Then, sinceA�APPROX(G; Chi) returns a sub-

graph withd-cost at most�D, it is clear that ALGORITHM BICRITERIA-EQUIVALENCE outputs a

subgraph in this case. As a consequence of Step 2a and the performance guarantee of the approxima-

tion algorithmA�APPROX, we get thatC0 + 1 � OPTc. By Step 2b we have thatHeud � �D

andHeuc � �(C0 + 1) � �OPTc. Thus ALGORITHM BICRITERIA-EQUIVALENCE outputs a sub-

graph fromS whosec-cost is at most� times that of the minimumc-costD-bounded subgraph and

whosed-cost is at most�D.

9



Note however that in general the resulting(�; �)-approximation algorithm is, notstronglypoly-

nomial since it depends on the range of thec-costs. But it is apolynomial-timealgorithm since its

running time is linearly dependent onlog Chi the largestc-cost. The above discussion leads to the

following theorem.

Theorem 5.2 Any (�; �)-approximation algorithm for (A, B, S) can be transformed in poly-

nomial time into a (�; �)-approximation algorithm for (B, A, S).

5.2 Comparing with other functional combinations: Generality

Our formulation is more general because it subsumes the case where one wishes to minimize some

functional combination of the two criteria. We briefly comment on this next. For the purposes of

illustration letA andB be two objective functions and let us say that we wish to minimize the sum

of the two objectivesA andB. Call this an (A + B, S) problem. LetA�APPROX(G; C) be

any (�; �)-approximation algorithm for (A, B, S) on graphG with budgetC under thec-cost. We

show that8� > 0, there is a polynomial time(1 + �) maxf�; �g-approximation algorithm for the

(A +B, S) problem. The transformation uses simple linear search in steps of(1 + �) over the range

of values of thec-cost with an application of the given approximation algorithm,A�APPROX,

at each step of this search. Let the optimum value for the (A + B, S) problem on a graphG be

OPTc+d = (Vc + Vd), whereVc andVd denote respectively the contribution of the two costsc

and d for A andB. Let Heuc(C) (Heud(C)) denote thec-cost (d-cost) of the subgraph output

by A�APPROX(G; C). Finally, letHeuc+d(C) denote the value computed by ALGORITHM

CONVERT.

ALGORITHM CONVERT:

� Input: G - graph, an� > 0,A�APPROX - an(�; �)-approximation algorithm for (A,
B, S).

�1. LetChi be an upper bound on thec-cost of any subgraph inS.

2. LetR = dlog(1+�) Chie

3. Forj = 0 toR do

(a) Mj = (1 + �)j

(b) Let Heuc(Mj), Heud(Mj) denote thec-cost and thed-cost of solution obtained by
A�APPROX(G;Mj).

4. Return the minimum over all0 � j � R, of Fj = Heuc(Mj) +Heud(Mj).

� Output: A subgraph fromS such that the sum of itsc-cost and itsd-costs is at most(1 +
�)maxf�; �g(OPTc+d).

Theorem 5.3 Let A�APPROX(G; C) be any (�; �)-approximation algorithm for (A, B, S)

on graph G with budget C under the c-cost. Then, for all � > 0, there is a polynomial time

(1 + �)maxf�; �g-approximation algorithm for the (A + B, S) problem.

10



Proof Sketch: Consider the iteration of the binary search in which the bound on thec-cost isR such

thatVc � R � (1 + �)Vc. Notice that such a bound is considered as a result of discretization of the

interval[0; Chi]. Then as a consequence of the performance guarantee of the approximation algorithm

A�APPROX, we get that

Heuc(R) � �R � (1 + �)�Vc:

By Step 4, the performance guarantee of the algorithmA�APPROX, and the hostility ofA and

B, we have thatHeud(R) � �Vd. ThusHeuc+d(R) � (1+�)�Vc+�Vd � (1+�)maxf�; �g(Vc+

Vd). Since ALGORITHM CONVERT outputs a subgraph fromS the sum of whosec-cost andd-cost

is minimized, we have that

min
C02[0;Chi]

�
Heuc(C

0) +Heud(C
0)
�
� (1 + �)maxf�; �g(OPTc+d):

A similar argument shows that an(�; �)-approximation algorithmA�APPROX(G; C), for

a (A, B, S) problem can be used to find devise a polynomial time(1 + �)2�� approximation algo-

rithm for the (A � B, S) problem. A similar argument can also be given for other basic functional

combinations. We make two additional remarks.

1. Algorithms for solving (f (A, B), S) problems can not in general guarantee any bounded per-

formance ratios for solving the (A,B, S) problem. For example, a solution for the (Total Cost

+ Total Cost , Spanning Tree) problem or the (Total Cost/Total Cost , Spanning Tree) problem

can not be directly used to find a good(�; �)-approximation algorithm for the (Total Cost,

Total Cost, Spanning Tree)-bicriteria problem.

2. The use of approximation algorithms for (A,B, S)-bicriteria problems, to solve (f (A,B), S)

problems (f denotes a function combination of the objectives) does not always yield the best

possible solutions. For example problems such as (Total Cost + Total Cost , Spanning Tree)

and (Total Cost/Total Cost , Spanning Tree) [Ch77, Me83] can be solved exactly in polynomial

time by direct methods but can only be solved approximately using any algorithm for the (Total

Cost, Total Cost , Spanning Tree)-bicriteria problem.11

6 Parametric Search

In this section, we present approximation algorithms for a broad class of bicriteria problems where

both the objectives in the problem are of the same type (e.g., both are total edge costs of some network

computed using two different costs on edges, or both are diameters of some network calculated using

two different costs etc.).

11This is true since the (Total Cost, Total Cost, Spanning Tree)-bicriteria problem isNP-complete and therefore unless
P = NP cannot be solved in polynomial time.
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As before, letG be a graph with two (integral) cost functions,c andd. Let C denote the budget

on criteriaA. We assume that thec andd cost functions are of the same kind; i.e., they are both

costs on edges or, costs on nodes. LetUVW(G; f) be any�-approximation algorithm that on input

G produces a solution subgraph inS minimizing criterionA, under the single cost functionf . In

a mild abuse of notation, we also letUVW(G; f) denote the (f -)cost of the subgraph output by

UVW(G; f) when running on inputG under cost functionf . We use the following additional nota-

tion in the description of the algorithm and the proof of its performance guarantee. Given constantsa

andb and two cost functionsf andg, defined on edges (nodes) of a graph,af + bg denotes the com-

posite function that assigns a costaf(e) + bg(e) to each edge (node) in the graph. Leth(D̂) denote

the cost of the subgraph, returned byUVW(G; ( D̂C )c+ d) (under the(( D̂C )c+ d)-cost function). Let

the minimumd-cost of aC-bounded subgraph inS beOPTd. Let Heuc (Heud) denote thec-cost

(d-cost) of the subgraph output by ALGORITHM PARAMETRIC-SEARCH given below.

Let  > 0 be a fixed accuracy parameter. In what follows, we devise a((1 + ); (1 + 1
 ))-

approximation algorithm for (A,A, S), under the two cost functionsc andd. The algorithm consists

of performing a binary search with an application of the given approximation algorithm,UVW, at

each step of this search.

ALGORITHM PARAMETRIC-SEARCH:

� Input: G - graph,C - budget on criteriaA under thec-cost,UVW - a �-approximation
algorithm that produces a solution subgraph inS minimizing criterionA, under a single
cost function, - an accuracy parameter.

�1. LetDhi be an upper bound on thed-cost of anyC-bounded subgraph inS.

2. Do binary search and find aD0 in [0; Dhi] such that

(a) UVW(G; (D
0

C )c+ d) returns a subgraph such thath(D0)
D0 > (1 + )�, and

(b) UVW(G; (D
0+1
C )c+ d) returns a subgraph such thath(D0+1)

(D0+1) � (1 + )�.

3. If the binary search in Step 2 fails to find a validC0 then output “NO SOLUTION” else
outputUVW(G; (D

0+1
C )c+ d).

� Output:A subgraph fromS such that itsd-cost is at most(1+ 1
 )� times that of the minimum

d-costC-bounded subgraph and itsc-cost is at most(1 + )�C.

Claim 6.1 The binary search, in Step 2 of ALGORITHM PARAMETRIC-SEARCH is well-defined.

Proof: Since( 1
RUVW(G; f)) is the same asUVW(G; fR ), we get thath(D̂)

D̂
= 1

D̂
UVW(G; ( D̂C )c+

d) = UVW(G; ( 1C )c +
1
D̂
d). Henceh(D̂)

D̂
is a monotone nonincreasing function ofD̂. Thus the bi-

nary search in Step 2 of ALGORITHM PARAMETRIC-SEARCH is well-defined.

Claim 6.2 If G contains a C-bounded subgraph in S then ALGORITHM PARAMETRIC-SEARCH

outputs a subgraph from S whose d-cost is at most (1+ 1
 )� times that of the minimum d-cost

C-bounded subgraph and whose c-cost is at most (1 + )�C.
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Proof: By claim 6.1 we have that the binary search in Step 2 of ALGORITHM PARAMETRIC-

SEARCH is well-defined.

Assume thatS contains aC-bounded subgraph. Then, sinceUVW(G; (Dhi

C )c + d) returns

a subgraph with cost at most(1 + )�Dhi, under the((Dhi

C )c + d)-cost function, it is clear that

ALGORITHM PARAMETRIC-SEARCH outputs a subgraph in this case.

As a consequence of Step 2a and the performance guarantee of the approximation algorithm

UVW, we get that

D0 + 1 �
OPTd


:

By Step 2b we have that the subgraph output by ALGORITHM PARAMETRIC-SEARCH has the fol-

lowing bounds on thec-costs and thed-costs.

Heud � h(D0 + 1) � �(1 + )(D0 + 1) � (1 +
1


)�OPTd

Heuc � (
C

D0 + 1
)h(D0 + 1) � (

C

D0 + 1
)(1 + )�(D0 + 1) = (1 + )�C:

Thus ALGORITHM PARAMETRIC-SEARCH outputs a subgraph fromS whosed-cost is at most

(1+ 1
 )� times that of the minimumd-costC-bounded subgraph and whosec-cost is at most(1+)�C.

Note however that the resulting((1+)�; (1+ 1
 )�)-approximation algorithm for (A,A, S) may

not bestronglypolynomial since it depends on the range of thed-costs. But it is apolynomial-time

algorithm since its running time is linearly dependent onlogDhi. Note thatDhi is at most some

polynomial inn times the maximumd-cost (of an edge or a node). Hencelog(Dhi) is at most a

polynomial in terms of the input specification.

The above discussion leads to the following theorem.

Theorem 6.3 Any �-approximation algorithm that produces a solution subgraph in S mini-

mizing criterion A can be transformed into a ((1+)�; (1+ 1
 )�)-approximation algorithm for

(A,A,S).

The above theorem can be generalized from the bicriteria case to the multicriteria case (with

appropriate worsening of the performance guarantees) where all the objectives are of the same type

but with different cost functions.

7 Diameter-Constrained Trees

In this section, we describe ALGORITHM DCST, our(O(log n); O(log n))-approximation algorithm

for (Diameter, Total cost, Steiner tree) or the diameter-bounded minimum Steiner tree problem. Note

that (Diameter, Total cost, Steiner tree) includes (Diameter, Total cost, Spanning tree) as a special

case. We first state the problem formally: given an undirected graphG = (V;E), with two cost
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functions c and d defined on the set of edges, diameter boundD and terminal setK � V , the

(Diameter, Total cost, Steiner tree) problem is to find a tree of minimumc-cost connecting the set of

terminals inK with diameter at mostD under thed-cost.

The technique underlying ALGORITHM DCST is very general and has wide applicability. Hence,

we first give a brief synopsis of it. The basic algorithm works in(log n) phases (iterations). Initially

the solution consists of the empty set. During each phase of the algorithm we execute a subroutine


 to choose a subgraph to add to the solution. The subgraph chosen in each iteration is required

to possess two desirable properties. First, it must not increase the budget value of the solution by

more thanD; second, the solution cost with respect toB must be no more thanOPTc, whereOPTc
denotes the minimumc-cost of aD bounded subgraph inS. Since the number of iterations of the

algorithm isO(log n) we get a(log n; logn)-approximation algorithm. The basic technique is fairly

straightforward. The non-trivial part is to devise the right subroutine
 to be executed in each phase.


 must be chosen so as to be able to prove the required performance guarantee of the solution. We

use the solution based decomposition technique [Ra94, RM+93] in the analysis of our algorithm. The

basic idea (behind the solution based decomposition technique) is to use the existence of an optimal

solution to prove that the subroutine
 finds the desired subgraph in each phase.

We now present the specifics of ALGORITHM DCST. The algorithm maintains a set of connected

subgraphs orclusterseach with its own distinguished vertex orcenter. Initially each terminal is in a

cluster by itself. In each phase, clusters are merged in pairs by adding paths between their centers.

Since the number of clusters comes down by a factor of2 each phase, the algorithm terminates in

dlog2 jKje phases with one cluster. It outputs a spanning tree of the final cluster as the solution.
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ALGORITHM DIAMETER-CONSTRAINED-STEINER-TREE (DCST):

� Input: G = (V;E) - graph with two edge cost functions,c andd, D - a bound on the
diameter under thed-cost,K � V - set of terminals,� - an accuracy parameter.

�1. Initialize the set of clustersC1 to containjKj singleton sets, one for each terminal inK.
For each cluster inC, define the single node in the cluster to be the center for the cluster.
Initialize the phase counti := 1.

2. Repeat until there remains a single cluster inCi

(a) Let the set of clustersCi = fC1 : : : ; Ckig at the beginning of thei’th phase (observe
thatk1 = jKj).

(b) Construct a complete graphGi as follows: The node setVi of Gi is fv :
v is the center of a cluster inCg. Let pathPxy be a(1 + �)-approximation to the mini-
mumc-cost diameterD-bounded path between centersvx andvy in G. Between every
pair of nodesvx andvy in Vi, include an edge(vx; vy) in Gi of weight equal to the
c-cost ofPxy.

(c) Find a minimum-weight matching of largest cardinality inGi.

(d) For each edgee = (vx; vy) in the matching, merge clustersCx andCy, for which vx
andvy were centers respectively, by adding pathPxy to form a new clusterCxy. The
node (edge) set of the clusterCxy is defined to be the union of the node (edge) sets of
Cx; Cy and the nodes (edges) inPxy. One ofvx andvy is (arbitrarily) chosen to be the
centervxy of clusterCxy andCxy is added to the cluster setCi+1 for the next phase.

(e) i := i+ 1:

3. LetC 0, with centerv0 be the single cluster left after Step 2. Output a shortest path tree of
C 0 rooted atv0 using thed-cost.

� Output: A Steiner tree connecting the set of terminals inK with diameter at most
2dlog2 neD under thed-cost and of totalc-cost at most(1 + �)dlog2 ne times that of the
minimumc-cost diameterD-bounded Steiner tree.

We make a few points about ALGORITHM DCST:

1. The clusters formed in Step 2d need not be disjoint.

2. All steps, except Step 2b, in algorithm DCST can be easily seen to have running times indepen-

dent of the weights. We employ Hassin’s strongly polynomialFPAS for Step 2b [Ha92]. Has-

sin’s approximation algorithm for theD-bounded minimumc-cost path runs in timeO(jEj(n
2

� log n
� )).

Thus ALGORITHM DCST is a strongly polynomial time algorithm.

3. Instead of finding an exact minimum cost matching in Step 2c, we could find an approximate

minimum cost matching [GW95]. This would reduce the running time of the algorithm at the

cost of introducing a factor of2 to the performance guarantee.

We now state some observations that lead to a proof of the performance guarantee of ALGO-

RITHM DCST. Assume, in what follows, thatG contains a diameterD-bounded Steiner tree. We

also refer to each iteration of Step 2 as a phase.
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Claim 7.1 Algorithm DCST terminates in dlog2 jKje phases.

Proof: Let ki denote the number of clusters in phasei. Note thatki+1 = dki2 e since we pair up the

clusters (using a matching in Step 2d). Hence we are left with one cluster after phasedlog2 jKje and

algorithm DCST terminates.

The next claim points out as clusters get merged, the nodes within each cluster are not too far away

(with respect tod-distance) from the center of the cluster. This intuitively holds for the following

important reasons. First, during each phase, the graphGi has as its vertices, the centers of the clusters

in that iteration. As a result, we merge the clusters by joining their centers in Step 2d. Second, in

Step 2d, for each pair of clustersCx andCy that are merged, we select one of their centers,vx or vy
as the centervxy for the merged clusterCxy. This allows us to inductively maintain two properties:

(i) the required distance of the nodes in a cluster to their centers in an iterationi is iD and (ii) the

center of a cluster at any given iteration is a terminal node.

Claim 7.2 Let C 2 Ci be any cluster in phase i of algorithm DCST. Let v be the center of C.

Then any node u in C is reachable from v by a diameter-iD path in C under the d-cost.

Proof: Note that the existence of a diameterD-bounded Steiner tree implies that all paths added in

Step 2d have diameter at mostD underd-cost. The proof now follows in a straightforward fashion

by induction oni.

Lemma 7.3 Algorithm DCST outputs a Steiner tree with diameter at most 2dlog2 jKje � D

under the d-cost.

Proof: The proof follows from Claims 7.1 and 7.2.

This completes the proof of performance guarantee with respect to thed-cost. We now proceed

to prove the performance guarantee with respect to thec-costs. We first recall the following pairing

lemma.

Claim 7.4 [RM+93] Let T be an edge-weighted tree with an even number of marked nodes.

Then there is a pairing (v1; w1), : : :, (vk; wk) of the marked nodes such that the vi�wi paths

in T are edge-disjoint.

Claim 7.5 Let OPT be any minimum c-cost diameter-D bounded Steiner tree and let OPTc
denote its c-cost. The weight of the largest cardinality minimum-weight matching found in

Step 2d in each phase i of algorithm DCST is at most (1 + �) �OPTc.
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Proof: Consider phasei of algorithm DCST. Note that since the centers at stagei are a subset of the

nodes in the first iteration, the centersvi are terminal nodes. Thus they belong toOPT . Mark those

vertices inOPT that correspond to the matched vertices,v1; v2; : : : ; v2b ki
2
c
, of Gi in Step 2c. Then

by Claim 7.4 there exists a pairing of the marked vertices, say(v1; v2); : : : ; (v2b ki
2
c�1

; v
2b

ki
2
c
), and a

set of edge-disjoint paths in OPT between these pairs. Since these paths are edge-disjoint their total

c-cost is at mostOPTc. Further these paths have diameter at mostD under thed-cost. Hence the sum

of the weights of the edges(v1; v2); : : : ; (v2b ki
2
c�1

; v
2b

ki
2
c
) in Gi , which forms a perfect matching

on the set of matched vertices, is at most(1 + �) � OPTc. But in Step 2c of ALGORITHM DCST,

a minimum weight perfect matching in the graphGi was found. Hence the weight of the matching

found in Step 2d in phasei of ALGORITHM DCST is at most(1 + �) �OPTc.

Lemma 7.6 LetOPT be any minimum c-cost diameter-D bounded Steiner tree and letOPTc
denote its c-cost. ALGORITHM DCST outputs a Steiner tree with total c-cost at most (1 +

�)dlog2 jKje �OPTc.

Proof: From Claim 7.5 we have that thec-cost of the set of paths added in Step 2d of any phase is

at most(1+ �) �OPTc. By Claim 7.1 there are a total ofdlog2 jKje phases and hence the Steiner tree

output by ALGORITHM DCST has totalc-cost at most(1 + �)dlog2 jKje � OPTc.

From Lemmas 7.3 and 7.6 we have the following theorem.

Theorem 7.7 There is a strongly polynomial-time algorithm that, given an undirected graph

G = (V;E), with two cost functions c and d defined on the set of edges, diameter bound D,

terminal set K � V and a fixed � > 0, constructs a Steiner tree of G of diameter at most

2dlog2 jKjeD under the d-costs and of total c-cost at most (1 + �)dlog2 jKje times that of the

minimum-c-cost of any Steiner tree with diameter at most D under d.

8 Treewidth-Bounded Graphs

In this section we consider the class of treewidth-bounded graphs and give algorithms with improved

time bounds and performance guarantees for several bicriteria problems mentioned earlier. We do

this in two steps. First we develop pseudopolynomial-time algorithms based on dynamic program-

ming. We then present a general method for deriving fully polynomial-time approximation schemes

(FPAS) from the pseudopolynomial-time algorithms. We also demonstrate an application of the

above results to the minimum broadcast time problem.

A class of treewidth-bounded graphs can be specified using a finite number of primitive graphs

and a finite collection of binary composition rules. We use this characterization for proving our

results. A class of treewidth-bounded graphs� is inductively defined as follows [BL+87].
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1. The number of primitive graphs in� is finite.

2. Each graph in� has an ordered set of special nodes calledterminals. The number of terminals

in each graph is bounded by a constant, sayk.

3. There is a finite collection of binary composition rules that operate only at terminals, either

by identifying two terminals or adding an edge between terminals. A composition rule also

determines the terminals of the resulting graph, which must be a subset of the terminals of the

two graphs being composed.

8.1 Exact Algorithms

Theorem 8.1 Every problem in Table 2 can be solved exactly in O((n � C)O(1))-time for any

class of treewidth bounded graphs with no more than k terminals, for fixed k and a budget

C on the first objective.

The above theorem states that there exist pseudopolynomial-time algorithms for all the bicriteria

problems from Table 2 when restricted to the class of treewidth-bounded graphs. The basic idea is to

employ a dynamic programming strategy. In fact, this dynamic programming strategy (in conjunction

with Theorem 5.2) yields polynomial-time (not just pseudopolynomial-time) algorithms whenever

one of the criteria is the degree. We illustrate this strategy by presenting in some detail the algorithm

for the diameter-bounded minimum cost spanning tree problem.

Theorem 8.2 For any class of treewidth-bounded graphs with no more than k terminals,

there is an O(n �k2k+4 �DO(k4))-time algorithm for solving the diameter D-bounded minimum

c-cost spanning tree problem.

Proof: Let d be the cost function on the edges for the first objective (diameter) andc, the cost

function for the second objective (total cost). Let� be any class of decomposable graphs. Let the

maximum number of terminals associated with any graphG in � be k. Following [BL+87], it is

assumed that a given graphG is accompanied by a parse tree specifying howG is constructed using

the rules and that the size of the parse tree is linear in the number of nodes.

Let� be a partition of the terminals ofG. For every terminali letdi be a number inf1; 2; : : : ;Dg.

For every pair of terminalsi and j in the same block of the partition� let dij be a number in

f1; 2; : : : ;Dg. Corresponding to every partition�, setfdig and setfdijg we associate a cost for

G defined as follows:

Cost�fdig;fdijg = Minimum total cost under thec function of any forest containing

a tree for each block of�, such that the terminal nodes

occurring in each tree are exactly the members of the corresponding

block of�, no pair of trees is connected, every vertex inG
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appears in exactly one tree,di is an upper bound on the maximum

distance (under thed-function) fromi to any vertex in the same

tree anddij is an upper bound the distance (under thed-function)

between terminalsi andj in their tree.

For the above defined cost, if there is no forest satisfying the required conditions the value ofCost is

defined to be1.

Note that the number of cost values associated with any graph in� is O(kk � DO(k2)). We now

show how the cost values can be computed in a bottom-up manner given the parse tree forG. To

begin with, since� is fixed, the number of primitive graphs is finite. For a primitive graph, each cost

value can be computed in constant time, since the number of forests to be examined is fixed. Now

consider computing the cost values for a graphG constructed from subgraphsG1 andG2, where the

cost values forG1 andG2 have already been computed. Notice that any forest realizing a particular

cost value forG decomposes into two forests, one forG1 and one forG2 with some cost values.

Since we have maintained the best cost values for all possibilities forG1 andG2, we can reconstruct

for each partition of the terminals ofG the forest that has minimum cost value among all the forests

for this partition obeying the diameter constraints. We can do this in time independent of the sizes of

G1 andG2 because they interact only at the terminals to formG, and we have maintained all relevant

information.

Hence we can generate all possible cost values forG by considering combinations of all relevant

pairs of cost values forG1 andG2. This takes timeO(k4) per combination for a total time of

O(k2k+4 � DO(k4)). As in [BL+87], we assume that the size of the given parse tree forG is O(n).

Thus the dynamic programming algorithm takes timeO(n � k2k+4 � DO(k4)). This completes the

proof.

8.2 Fully Polynomial-Time Approximation Schemes

The pseudopolynomial-time algorithms described in the previous section can be used to design fully

polynomial-time approximation schemes (FPAS) for these same problems for the class of treewidth-

bounded graphs. We illustrate our ideas once again by devising anFPAS for the (Diameter, Total

cost, Spanning tree)-bicriteria problem for the class of treewidth-bounded graphs. The basic tech-

nique underlying our algorithm, ALGORITHM FPAS-DCST, is approximate binary search using

rounding and scaling - a method similar to that used by Hassin [Ha92] and Warburton [Wa87].

As in the previous subsection, letG be a treewidth-bounded graph with two (integral) edge-

cost functionsc andd. Let D be a bound on the diameter under thed-cost. Let� be an accuracy

parameter. Without loss of generality we assume that1
� is an integer. We also assume that there exists

aD-bounded spanning tree inG. LetOPT be any minimumc-cost diameterD-bounded spanning

tree and letOPTc denote itsc-cost. LetTCSTonTW(G; c; d; C) be a pseudopolynomial time

algorithm for the (Total cost, Diameter, Spanning tree) problem on treewidth-bounded graphs; i.e.,
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TCSTonTW outputs a minimum diameter spanning tree ofG with total cost at mostC (under the

c-costs). Let the running time ofTCSTonTW bep(n;C) for some polynomialp. For carrying out

our approximate binary search we need a testing procedure PROCEDURETEST(V) which we detail

below:

PROCEDURETEST(�):

� Input: G - treewidth bounded graph,D - bound on the diameter under thed-cost, � -
testing parameter,TCSTonTW - a pseudopolynomial time algorithm for the (Total cost,
Diameter, Spanning tree) problem on treewidth-bounded graphs,� - an accuracy parameter.

�1. Let b c
��=(n�1)c denote the cost function obtained by setting the cost of edgee to

b ce
��=(n�1)c.

2. If there exists aC in [0; n�1
� ] such thatTCSTonTW(G; b c

��=(n�1)c; d; C) produces a
spanning tree with diameter at mostD under thed-cost then output LOW otherwise output
HIGH.

� Output: HIGH/LOW.

We now prove that PROCEDURETEST(�) has the properties we need to do a binary search.

Claim 8.3 If OPTc � � then PROCEDURETEST(�) outputs LOW. And, if OPTc > �(1 + �)

then PROCEDURETEST(�) outputs HIGH.

Proof: If OPTc � � then since

X

e2OPT

b
ce

��=(n� 1)
c �

X

e2OPT

ce
��=(n� 1)

�
OPTc

��=(n� 1)
�
n� 1

�

therefore PROCEDURETEST(�) outputs LOW.

Let Tc be thec-cost of any diameterD bounded spanning tree. Then we haveTc � OPTc. If

OPTc > �(1 + �) then since

X

e2T

b
ce

��=(n� 1)
c �

X

e2T

(
ce

��=(n� 1)
� 1) �

Tc
��=(n� 1)

� (n� 1) �
OPTc

��=(n� 1)
� (n� 1) >

n� 1

�

therefore PROCEDURETEST(�) outputs HIGH.

Claim 8.4 The running time of PROCEDURETEST(�) is O(n� p(n;
n
� )).

Proof: PROCEDURETEST(�) invokesTCSTonTW only n�1
� times. And each time the budget

C is bounded byn�1
� , hence the running time of PROCEDURETEST(�) isO(n� p(n;

n
� )).

We are ready to describe ALGORITHM FPAS-DCST - which uses PROCEDURETEST(�) to do

an approximate binary search.
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ALGORITHM FPAS-DCST:

� Input: G - treewidth-bounded graph,D - bound on the diameter under thed-cost,
TCSTonTW - a pseudopolynomial time algorithm for the (Total cost, Diameter, Span-
ning tree) problem on treewidth-bounded graphs,� - an accuracy parameter.

�1. LetChi be an upper bound on thec-cost of anyD-bounded spanning tree. LetLB = 0
andUB = Chi.

2. WhileUB � 2LB do

(a) Let� = (LB + UB)=2.

(b) If PROCEDURETEST(�) returns HIGH then setLB = � else setUB = �(1 + �).

3. RunTCSTonTW(G; b c
LB�=(n�1)c; d; C) for all C in [0; 2(n�1

� )] and among all the
trees with diameter at mostD under thed-cost output the tree with the lowestc-cost.

� Output: A spanning tree with diameter at mostD under thed-cost and withc-cost at most
(1 + �) times that of the minimumc-costD-bounded spanning tree.

Lemma 8.5 IfG contains aD-bounded spanning tree then ALGORITHM FPAS-DCSToutputs

a spanning tree with diameter at most D under the d-cost and with c-cost at most (1 +

�)OPTc.

Proof: It follows easily from Claim 8.3 that the loop in Step 2 of ALGORITHM FPAS-DCST

executesO(logChi) times before exiting withLB � OPTc � UB < 2LB.

Since

X

e2OPT

b
ce

LB�=(n� 1)
c �

X

e2OPT

ce
LB�=(n� 1)

�
OPTc

LB�=(n� 1)
� 2(

n� 1

�
)

we get that Step 3 of ALGORITHM FPAS-DCST definitely outputs a spanning tree. LetHeu be the

tree output. Then we have that

Heuc =
X

e2Heuc

ce � LB�=(n� 1)
X

e2Heuc

ce
LB�=(n� 1)

� LB�=(n� 1)(
X

e2Heuc

b
ce

LB�=(n� 1)
c+ 1):

But since Step 3 of ALGORITHM FPAS-DCST outputs the spanning tree with minimumc-cost we

have that X

e2Heuc

b
ce

LB�=(n� 1)
c �

X

e2OPT

b
ce

LB�=(n� 1)
c:

Therefore

Heuc � LB�=(n� 1)
X

e2OPT

b
ce

LB�=(n� 1)
c+ �LB �

X

e2OPT

ce + �OPTc � (1 + �)OPTc:

This proves the claim.

Lemma 8.6 The running time of ALGORITHM FPAS-DCSTis O(n� p(n;
n
� ) logChi).
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Proof: From Claim 8.4 we see that Step 2 of ALGORITHM FPAS-DCST takes timeO(n� p(n;
n
� ) logChi)

while Step 3 takes timeO(2n� p(n;
2n
� )). Hence the running time of ALGORITHM FPAS-DCST is

O(n� p(n;
n
� ) logChi).

Lemmas 8.6 and 8.5 yield:

Theorem 8.7 For the class of treewidth-bounded graphs, there is an FPAS for the (Diame-

ter, Total cost, Spanning tree)-bicriteria problem with performance guarantee (1; 1 + �).

As mentioned before, similar theorems hold for the other problems in Table 2 and all these results

extend directly to Steiner trees.

8.3 Near-Optimal Broadcast Schemes

The polynomial-time algorithm for the (Degree, Diameter, Spanning tree)-bicriteria problem for

treewidth-bounded graphs can be used in conjunction with the ideas presented in [Ra94] to obtain

near-optimal broadcast schemes for the class of treewidth-bounded graphs. As mentioned earlier,

these results generalize and improve the results of Kortsarz and Peleg [KP92].

Given an unweighted graphG and a rootr, abroadcast schemeis a method for communicating

a message fromr to all the nodes ofG. We consider a telephone model in which the messages are

transmitted synchronously and at each time step, any node can either transmit or receive a message

from at most one of its neighbors. Theminimum broadcast time problemis to compute a scheme that

completes in the minimum number of time steps. LetOPTr(G) denote the minimum broadcast time

from rootr and letOPT (G) =Maxr2GOPTr(G) denote the minimum broadcast time for the graph

from any root. The problem of computingOPTr(G) - theminimum rooted broadcast time problem

- and that of computingOPT (G) - theminimum broadcast time problemare bothNP-complete for

general graphs [GJ79]. It is easy to see that any approximation algorithm for the minimum rooted

broadcast time problem automatically yields an approximation algorithm for the minimum broadcast

time problem with the same performance guarantee. We refer the readers to [Ra94] for more details

on this problem. Combining our approximation algorithm for ( Diameter, Total cost, Spanning tree)-

bicriteria problem with performance guarantee(1; 1 + �) for the class of treewidth bounded graphs

with the observations in [Ra94] yields the following theorem.

Theorem 8.8 For any class of treewidth-bounded graphs there is a polynomial-time O( log n
log log n)-

approximation algorithm for the minimum rooted broadcast time problem and the minimum

broadcast time problem.

9 Concluding Remarks

We have obtained the first polynomial-time approximation algorithms for a large class of bicriteria

network design problems. The objective function we considered were (i) degree, (ii) diameter and
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(iii) total cost. The connectivity requirements considered were spanning trees, Steiner trees and (in

several cases) generalized Steiner trees. Our results were based on the following three ideas:

1. A binary search method to convert an(�; �)-approximation algorithm for (A,B, S)-bicriteria

problems to a(�; �)-approximation algorithm for (B,A, S)-bicriteria problems.

2. A parametric search technique to devise approximation algorithms for (A,A,S)-bicriteria prob-

lems. We note that Theorem 6.3 is very general. Givenany�-approximation algorithm for min-

imizing the objectiveA in the subgraph-classS, Theorem 6.3 allows us to produce a(2�; 2�)-

approximation algorithm for the (A,A, S)-bicriteria problem.

3. A cluster based approach for devising approximation algorithms for certain categories of (A,B,S)-

bicriteria problems.

We also devised pseudopolynomial time algorithms and fully polynomial time approximation

schemes for a number of bicriteria network design problems for the class of treewidth-bounded

graphs.

Subsequent work

During the time when this paper was under review, important progress has been made in improving

some of the results in this paper. Recently, Ravi and Goemans [RG95] have devised a(1; 1 + �)

approximation scheme for the (Total Cost, Total Cost, Spanning tree) problem. Their approach does

not seem to extend to devising approximation algorithms for more general subgraphs considered

here. In [KP97], Kortsarz and Peleg consider the (Diameter, Total Cost, Steiner tree) problem. They

provide polynomial time approximation algorithms for this problem with performance guarantees

(2; O(log n)) for constant diameter boundD and(2 + 2�; n�) for any fixed0 < � < 1 for general

diameter bounds. Improving the performance guarantees for one or more of the problems considered

here remains an interesting direction for future research.
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